Using a Diabetes Patient’s Own Liver Cells as a Novel Source of Insulin Print E-mail
By Sarah Ferber, Ph.D.   
Friday, 15 June 2012 02:33
icon_expertbriefingDiabetes currently afflicts approximately 285 million people worldwide, about 6.4 percent of the global population. The World Health Organization projects that this number is set to rise to 366 million by the year 2030.

According to the American Diabetes Association, 1.9 million new cases of diabetes are diagnosed in people aged 20 years and older in 2010, an estimated 7.0 million Americans have undiagnosed diabetes, and another 79 million have pre-diabetes. In addition, approximately 25.8 million children and adults in the United States-8.3% of the population-have diabetes. 

Several kinds of treatment for diabetes are currently available, but all of them present specific drawbacks to the patient. For example, insulin therapy can trigger everything from weight gain to hypoglycemia, and its administration must be constantly controlled and monitored by the patient. A novel approach to this problem is currently being pursued by a small biotech company named Orgenesis, which initiated its approach by asking the following question: What if a diabetes patient's own cells-extracted from his or her own mature tissue-could be made to produce insulin, secreting the compound automatically when needed? This particular variety of cell therapy is a form of what has been dubbed "autologous cell replacement."

For years, the concept of harvesting stem cells and re-implanting them into one's own body to regenerate organs and tissues has been embraced and researched in animal models. The treatment being developed by Orgenesis consists of several steps. First, a standard liver biopsy is taken from a diabetes patient in a clinical center and sent to a laboratory. In the lab, the liver cells are first propagated in vitro. Some of these cells are then manipulated with a therapeutic agent (i.e., the "master regulator" PDX-1 that governs pancreas development, or additional pancreatic transcription factors in adenovirus-vector) that converts a subpopulation of liver cells into different cells with pancreatic islet phenotype and function.

The therapeutic agent triggers a cascade of events, converting the cells into "autologous insulin-producing" (AIP) cells. These cells now act similarly to the beta cells that produce insulin in the pancreas of healthy individuals. Insulin is not only produced, but also stored and secreted in a glucose-regulated manner. 

Back at the clinical center, the newly formed AIP cells are then transplanted in a standard infusion procedure back to the patient's liver where they secrete insulin. Since the initial liver cells were taken from the patient himself or herself, there is no chance of rejection. Orgenesis has successfully tested its technology in mice, rats and pigs, and is working toward initiating clinical trials in humans.  

The surprising capacity to activate pancreatic lineage in the liver was first demonstrated in mice by systemic PDX-1 administration using recombinant adenovirus gene delivery. PDX-1 plays a dual and central role in regulating both pancreas organogenesis in embryo and beta cell function in adults. The capacity of PDX-1 to direct pancreas development has been demonstrated in mature fully differentiated liver in vivo, both in mice and in Xenopus, possibly via a process called trans-differentiation. This describes an irreversible switch of one type of differentiated cell into another differentiated cell.
AIP therapy seems to be safer than other options, as it does not alter the host genome but only alters the set of expressed genetic information that seems to be highly specific to the reprogramming protocol. In addition, no human organ donations or embryo-derived cells are required.

This form of therapy, if proven to be workable in clinical trials, would provide several advantages over other insulin-dependent diabetes therapies currently being studied. First, it frees the patient from daily involvement in the monitoring of blood glucose levels, numerous insulin injections and watching food intake and exercise. Indeed, the body itself is now continuously controlling blood glucose levels. In addition to avoiding the chance of autoimmune rejection, the procedure is only minimally invasive.

In summary, the use of adult human liver cells for generating functional insulin-producing tissue may pave the way to autologous implantations, thus allowing the diabetic patient to be the donor of his or her own insulin-producing tissue.

- - - - - - - -

Sarah Ferber, Ph.D. is Chief Science Officer and founder of Orgenesis (OTCBB:ORGS), a development-stage company with a novel therapeutic technology dedicated to converting a patient’s own liver cells into functional insulin-producing cells as a treatment for diabetes. She can be reached at [email protected].

"Featured Content" profiles are meant to provide awareness of these companies to investors in the small-cap and growth equity community and should not in any way come across as a recommendation to buy, sell or hold these securities. BiomedReports is not paid or compensated by newswires to disseminate or report news and developments about publicly traded companies, but may from time to time receive compensation for advertising, data, analytics and investor relation services from various entities and firms. Full disclosures should be read in the 'About Us Section'.

Add this page to your favorite Social Bookmarking websites
Digg! Reddit!! Mixx! Google! Live! Facebook! Technorati! StumbleUpon! MySpace! Yahoo!

blog comments powered by Disqus